
V

O
Lü

C/)
LU

ESD-TR-70-14I

5D ACCESSION LIST
ESTI Call *>U£k^m_%XCLl£3
Copy No. IJ^^^^^^^^

THE DESIGN AND IMPLEMENTATION OF A
CONVERSATIONAL EXTENSIBLE LANGUAGE

Jay M. Spitzen

May 1970

DIRECTORATE OF SYSTEMS DESIGN AND DEVELOPMENT
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Fielö, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; its distribution is
unlimited. ESD RECORD COPY

JESTI), BUILDING 1211 °mm

(Prepared under Contract No. F19628-68-C-010I by Harvard University,
Cambridge, Massachusetts.)

ESD-TR-70-I4I

THE DESIGN AND IMPLEMENTATION OF A
CONVERSATIONAL EXTENSIBLE LANGUAGE

Jay M. Spitzen

May 1970

DIRECTORATE OF SYSTEMS DESIGN AND DEVELOPMENT
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; Its distribution is
unlimited. _____

(Prepared under Contract No. F[9628-68-C-0l0f by Harvard University,
Cambridge, Massachusetts.)

FORWARD

This report was prepared in support of Project 2801,
Task 280102 by Harvard University, Cambridge, Massachusetts
under Contract F19628-68-C-0101, monitored by John Goodenough,
ESMDA, and was submitted 1 May 1970.

This technical report has been reviewed and is approved.

SYÖJIA R. MAYER f WILLIAM^. HfiSttR, Col, USAF
Project Officer /^.Director o/fSyst/eras Design &

Developme^

Acknowledgment

I have found it a privilege and a pleasure to do computer
science at Harvard. In particular, I wish to express my gratitude
and appreciation for the guidance of two men without whom the work
described here would not even have been contemplated.

Professor T. E'. Cheatham introduced me to computer
science. Most of what I know of the field rests on the foundation
that he built, and for this I am in his debt.

Professor Thomas A. Standish has given generously of his
time and effort in providing technical advice, criticizing rough
drafts of this report and lending a sympathetic ear when one was
needed.

There is an intangible quality in computer science - good
taste - that usually makes the difference between good and bad
computer science. I consider myself fortunate to have such models
of this quality as Professors Cheatham and Standish to try to emulate.

Thank you.
Jay M. Spitzen

-li-

ABSTRACT

This report describes CEL, a conversational extensible
language. Its syntax, data, control structures and conversational
features are presented and compared to those of other languages.
Its use is illustrated by means of several examples in the areas of
list processing, polynomial arithmetic, formula manipulation,
vector arithmetic, trees and syntax analysis, complex and
rational arithmetic and block structure and own variables.

- 111 -

TABLE OF CONTENTS

Forward ii

Abstract iii

Table of Contents iv

Section I. Introduction 1

Section II. The Limits of Conventional Languages 2

A. An Introduction 2

B. Special Purpose Languages 3

C. General Purpose Languages 4

1. Shell Languages 4

2. Extensible Languages 5

Section III. Features of Extensible Languages 7

A. Data 7

B. Syntax 18

C. Control 20

Section IV. Conversation and Interpretation 21

Section V. Description of CEL 26

Section VI. Programming in CEL 32

A. An Introduction 32

B. List Processing 33

C. Polynomials 39

D. Formulas 42

E. Vectors. . 46

-v-

F. Trees and Syntax 49

G. Complex and Rational Arithmetic 57

H. Block Structure and Own Variables 61

Section VII. Implementation of CEL 64

Section VIII. Conclusions 65

Appendix A. Library Functions of CEL 66

Appendix B. F and G Functions and Precedence Matrix for a

Front End Syntax of CEL 69

References 70

-vi-

SECTION I

Introduction

In November 1969 the author undertook the design of a

conversational extensible language and the implementation of that

language on Harvard University's PDP-10 Computer. That design

is now complete and the language processor that was built, CEL,

is now running. The purpose of this paper is to describe the language

and its use.

There are today, it has been estimated, over 1700 differ-

ent programming languages in over 40 special application areas.

Thus he who proposes another language must either be able to show

that it serves a purpose not already better served by one of its pre-

decessors or else be judged guilty of having done no more than con-

tributed to the flood of languages. We will argue that the language

presented here is especially useful for a significant class of users and

variety of uses by virtue of being both conversational and extensible.

We will argue further that the properties of conversationality and ex-

tensibility are particularly suited to being combined in a single lan-

guage. Thus we feel justified in unleashing CEL on the world.

-1-

SECTION II

The Limits of Conventional Languages

A. An Introduction

In computing we have theoretical constructs (e. g. the Turing

Machine or Markov Algorithm) capable, if Church's Thesis is correct,

of computing any result for which we can specify a sufficiently pre-

cise procedure. Yet we find that the practical problem of computing

something even moderately complex is often a great strain on our

talents. It may be that a reason for this distinction between what is

computable in theory and what is computable in practice is the inade-

quacy of the tools we use to describe computation to our machines -

that is, programming languages.

Programming languages range from absolute machine code

and assembly languages to a wide variety of higher level languages.

The former give us total flexibility and computational power and the

efficiency of hand tailored models. The price we pay for this power

and efficiency is that programs written in assembly languages to solve

hard problems are generally of immense length and complexity. In

this respect one notes that the production of the OS/360 operating

system has so far taken three man millenia of effort and cost on the

order of 100 million dollars. The current result is a program whose

length is over 5 million lines of code and which is still not completely

debugged[22].

Hence for a wide variety of problems we have sought

-2-

refuge from this complexity in the higher level languages. Let us

consider then the scope of applicability of various kinds of higher level

languages. It is a reasonable approximation, for this purpose, to

classify higher level languages as either special or general purpose

and to break down the latter class into monolithic and extensible (or,

to use Cheatham's terms, shell and core) languages.

B. Special Purpose Languages

Two of the best known special purpose languages are

FORTRAN and ALGOL 60. These permit the production of programs

that are fairly readable and short, especially by comparison with ma-

chine code, for the things it is reasonable to do in ALGOL or FORTRAN.

This includes, however, only straightforward numerical computations.

Attempts at hard symbol manipulation problems in ALGOL or FORTRAN

generally are so much less efficient than machine code, if perhaps

more readable, as to be prohibitively expensive. One may note that

the reason these languages are inefficient in these sorts of computa-

tions is that the languages do not provide very much richness in their

data structures or syntax - what is there is built in and effectively

cast in concrete. If what one wants to do is readily done in the syn-

tax and with the data structures provided, well and good. If not, one

must look elsewhere.

There is what appears at first glance to be a solution to this

problem. If ALGOL 60, for example, doesn't provide the forms appro-

-3-

priate to a particular problem area, surely one can find a language

that does, since there are languages particularly suited to each of a

large variety of problem categories. This isn't, however, always

an adequate answer. If there is a language suited to a problem (and

if it is a problem not like any previously treated with computer methods

there probably won't be) it may well be unknown to the user who needs

it. Certainly the learning of any sizeable subset of the existing pro-

gramming languages is too great a burden to impose on most com-

puter users. Even if our hypothetical user does know a language

suited to his problem, he will in all likelihood discover that it has not

been implemented on the computers to which he has access. Finally,

and most importantly, if a particular user requires the resources of

two or more distinct problem oriented languages, he will find that

there is no general or easy way to obtain in a single language the de-

sired union of subsets of several different languages.

C. General Purpose Languages

1. Shell Languages

We have a few alternatives remaining. One is to try, whenever

the special purpose languages do not serve, to use one of the general

purpose shell languages, e. g. , PL/1. Although these do provide a

very rich data space, they generally do not provide very much varia-

bility of syntax. Furthermore, they are built on the assumption that

every user needs all data structures and techniques. As a consequence,

-4-

they force their users to pay the overhead associated with all the

language's components - those that are needed for a problem as well

as those that are not. The construction of such all inclusive blends,

besides being a massive programming effort, must, by its very nature,

involve the making of a number of decisions at the time of language

design. Even where these don't create anomalies (e. g. 7<6<5 has the

value TRUE in PL/1) many are bound to differ from the decision that

would have been made by some class of future users. For example,

if A and B are conformable matrices, PL/1 will always interpret

A*B as the element by element product. There is no reasonable way

to override this and have A*B mean the normal matrix product.

2. Extensible Languages

If then, there is a never ending source of problems for which

existing special purpose and shell languages are not suited, we will

be forced to build a new language processor for each of a number of

machines every time such a problem arises. When one considers the

number of existing programming languages, it becomes clear that many

people have found it necessary to do just that. Since the building of

a language processor usually requires a substantial investment of

time and money, an investment one would prefer to make in a more

direct attack on the problem one is solving, the cost of this approach

makes it impractical as anything more than a stopgap if there is another

option open.

-5-

Therefore we claim that what is needed is a type of language

which is sufficiently flexible in its syntax and data as to be moldable

into the forms required for a large class of problems at a cost much

below that of producing a new language from scratch. We further claim

that the core or extensible language is of this type. Before proceeding

to describe such languages, and in particular CEL, we point out that

the choice between the extensible and the shell language is often not

clear-cut. The user of an extensible language who must extend it,

for some problem, to the level of complexity of a PL/1, will probably

produce a product that is a good deal less workable than PL/1. More-

over, the user whose problem area requires the use of forms avail-

able in some shell language, may find that the shell representation is

sufficiently more efficient than any he can build out of the primitives

of an extensible language, to make it cheaper to pay the extra overhead

associated with the use of a shell language. The extensible language

is not intended to best serve the needs of users with problems of these

sorts. It is intended for the user for whom convenience of represent-

ation, directness and ease of use and variability of syntax are more

precious commodities than efficiency of execution.

-6-

SECTION in

Features of Extensible Languages

A. Data

The object of the extensible language is the provision of a

variable and flexible syntax and a data space that will host a very large

variety of problem types. The designs of the extensible languages

now extant suggest that a sufficiently rich data space is obtained by

adding to the data types of the conventional languages a few data type

definition operators. These are, in general, operators which act on

existing data types to produce new data types. Let us now describe

these operators and the definition process.

One begins with the set of atomic types initially defined in

the base language. These are usually those types which, though defin-

able by means of the data type definition operators, require special

treatment for purposes of efficiency and are likely to be required in

a significant class of extensions of the base. Such a set might be

{real, integer, literal, nil}, though it might also contain multipre-

cision varieties of these. Let us now list the data type constructors.

The first of these is the operator that defines row construct-

ors. It takes as arguments a data type and a positive integer length

and produces a constructor that creates rows of that length when applied

to arguments of that type. For example, if In denotes the row of n

integers 1, 2, . . . , n then I = row(integer, n)(l, . . . , n). Several points

should be noted about this constructor. First, it is sufficient to pro-

-7-

vide a one dimensional array constructor since an array of higher di-

mension k can be represented as a row of k (k-1)-dimensional arrays.

Second, this constructor will construct only homogeneous rows -

rows whose elements all have the same type. There are good reasons,

related to the efficiency of compiled code, for including this constraint

in compiled languages. In CEL however, as we shall see, these are

not operative. Third we note that the row data type constructor may

permit the length to be missing. In this case the data type produced

will be a row of dynamic length.

A second data type constructor is the struct (to use the

terminology of BASEL). It creates data types that have several com-

ponents, in general of different types. For example the type

struct(rp;real, ipireal) has two real components, called rp and ip re-

spectively, and is useful to model complex numbers. In general
n 8jv

struct(S|:ti)i=i is a data type with n components, the i called s{ and

of type t{. Another instance of this is a struct(stack:row(100> real), level:

integer) which might be used to model a stack of reals whose maximum

depth is 100.

A third data type constructor creates references, i. e. ,

pointers to data. We note that one useful application of the ref is the

modeling of "call by reference" in a language that does not explicitly

provide for it - since the value of a ref is a pointer to the datum and

the value of this value is, in turn, the datum pointed to. Moreover

-8-

it permits sharing - that is, the independent accessing of the same

datum via different pointers.

Finally, extensible languages generally provide a union
n

constructor which acts on a set of types {t^}., to produce a type t

defined by (x is of type t)< --> (5 i) (t£i<n)(x is of type tj). For exam-

ple, we can use union to define "list-of-integers" as follows

list-of-integers = union (pair-of-integers, nil)

pair-of-integers = struct (head:integer, tail:list-of-integers).

We note that there is usually a type denoted by any(or general or free)

defined by (x is of type any)<-->TRUE, i. e. , every datum is of this

type.

Having constructed an extended set of types, we need a num-

ber of functions to transact with them. These may be classified as

constructors, predicates and selectors. For each non-atomic type t

we need a function "construct-t" which given an appropriate set of

arguments constructs a datum of type t. We need a predicate on two

arguments which for a datum x and a type t tells us whether x is of

type t. Finally, we need selectors which produce from a datum its

component parts.

We note that selection is trivial for rows, and is accom-
n

plished by subscripting. For a data type struct (s-:tj)-=| the constructor
n

is a function t = [XxjXx^. . . Xxn. struct (S*:XJ). .} and the selectors are

the functions fj such that fj(t(x ,. . . ,xn)) = x:. It is clear that there

-9-

are a number of choices to be made as to how constructed data types

and their associated functions are to be designated. Let us therefore

indicate the choices made in three extensible languages - Jorrand's

BASEL[4,6,8,16], Garwick's GPL[8, 18], and CEL.

In BASEL to define the mode complex and deal with it one

might write

(let complex rep struct[real rp, real ip],

z t>e complex in

z = complex[l. 0, 2. 0]; rp of_z = 4. 0;. . .)

We note that here the data type name itself is the name of the con-

structor function and that selection is accomplished with the operator

of. BASEL provides a union type operator as described above and

a special predicate to test the type of a variable, e. g. ,

(let u be union(int or bool) in

u = 1;...

u = TRUE;. . .

when u is^ int then

factorial[u] else)

BASEL has a pointer data type called loc and provides a function

alloc which creates data of this type, e. g. ,

(let i be_int, j be loc int in

i = l;j = alloc 2;

j-->i;i = plus[i, val j];. . .)

Here the operator val follows the pointer and the operator "-->"

points the pointer at i.

-10-

A variable which is a row of k real numbers in BASEL has

type row k of real, where k is a positive integer. If arrays of dynamic

size are desired, any may be substituted for k in the mode descriptor..

Similarly, to declare complex in GPL one would write

block complex f real rp, ip};

complex z;z-->complex(l. 0, 2. 0);4. 0-->rp(z);. . .)

Here the data type's name is the name of the constructor function.

The '-->' is GPL's assignment operator. Selection is denoted by

functional notation. Although GPL does not explicitly provide a union

operator, its pointers, which have mode ptr , can point to data of var-

iable type. A predicate much like that in BASEL is provided for type

testing, e. g. , one might write

iff integer u . . . ; iff boolean u;. . .

One defines an array data type in GPL by writing, for ex-

ample, "array vector of real. " This defines the type vector to mean a

linear array of real numbers, each accessed by specifying its ordinal

position in the array. GPL permits the bounds of such an array either

to be specified by declaration or determined dynamically.

The nearest equivalents of these examples in CEL have some-

what different behavioral properties because CEL is an interpretive

language. This means that the machinery of the language processor

is all present at the time of program execution and hence that it is

-11-

possible to dispense with type declarations. The type of a variable

is simply the type of the last datum assigned to it or NIL if no assign-

ment to it has occurred. Another way to view this is to think of type

as a property not of variables but of values. To make Z the complex

1. 0+2. 01 one would write, without preliminaries,

Z<--MKSTR(RP:1. 0,IP:2. 0).

The function MKSTR is one of CEL's library functions and creates a

datum of type struct. If one wishes to create data of type complex

more conveniently, one can define a function COMPLEX, taking two

arguments and returning a datum constructed as above. Then one could

write, as in GPL or BASEL,

Z< --COMPLEX(1. 0,2. 0).

Having defined the type complex, one might choose to model quatern-

ions using the same constructor, giving it not real but instead complex

arguments. Since types are dynamic, one could write

Z<--COMPLEX(COMPLEX(l. 0,2. 5), COMPLEX(3. 1, -4.7)).

Selection from a struct is accomplished by writing the name

of the component desired in square brackets following the expression

whose value is the struct. For example if Z is a struct(RP:l. 0,IP:-2. 5)

then Z[RP] = 1. 0 and Z[lP] = -2. 5. Selection can be iterated for

struct 's with components that are struct 's, e. g. , If a is

struct(al:struct(a2:struct(a3;x))) then a[al;a2;a3] = x. Selection can

also be accomplished by subscripting with the ordinal position of the

component desired, as in GPL. For example, a(l)(l)(l) = x.

-12-

Predicates to test the type of a variable are available in

several varieties. First of all there is a library function ILK which

returns the type of its argument as an integer code (see Appendix A).

Further discrimination is possible via the invocation of library functions

that return the number of components of a struct or the name of its

i component as a literal. One may more conveniently test the type

of a datum by defining the constructor in such a way that it will insert

the additional information at the time of construction, for example

Z <-- MKSTR(TYPE:"COMPM,RP:l. 0,IP:3. 2)

Z2<-- MKSTR (TYPE:nPOLAR",RHO:l. 0,THETA:3. 2)

We note that constructor functions defined to create data of type Zl

or Z2 would still take two arguments. We claim that this method of

detecting type is probably optimal, since any given user of the language

will want to distinguish between only a subset of the data structures he

is using, and he can insert the minimum amount of additional information

into the data structures that is needed for this purpose.

It should be noted that the dynamic types of CEL, as opposed

to the declared and fixed types of languages such as BASEL or GPL,

are not always an advantage. In particular, if types are dynamic, it

is necessary to execute programs interpretively so that type testing

and switching are done correctly. The BASEL or GPL processors,

on the other hand, will refuse to compile a statement of the form

'rp of_z = alloc 1. 0' if z is complex. They can thus virtually eliminate

run time type switching (exceptions being the iff clause of GPL and the

-13-

when clause of BASEL.) whereas it is always present in CEL, The

tradeoff here is the standard one between efficiency and flexibility.

The notion of union in GPL, BASEL and other extensible

languages is primarily a means of overcoming the restrictions imposed

on the values of variables by type declarations. Since CEL contains

no declarations, the union operation is largely superfluous, except

where used for the convenient creation of predicates for testing type

class membership as described below.

Rows are created in CEL in two ways. The first is by in-

voking the library function MKROW which takes as arguments any num-

ber of data and creates a row having these data as its elements. The

second method of row creation is via the function MKNRW (Make Nil

Row) which takes a single positive integer as argument and creates

a row of that length with all its elements initially of type NIL. Since

CEL types are dynamic, CEL need not make special provision for

rows of dynamic size.

One property of BASEL or GPL's declarations, however,

would for some purposes be a great convenience in CEL. This id that a

type definition automatically creates convenient notations for the con-

structor and predicate functions. Indeed, let us describe a possible

straightforward extension of CEL that would add to CEL a data defin-

ition facility of the sort offered in BASEL or GPL. In particular we

want a facility which accepts the equivalent of BASEL'S 'let complex

rep struct[real rp, real ip]' and automatically adds to the system a

-14-

constructor function that creates complex data and a predicate that

tests whether an arbitrary datum is complex. It need not add selection

functions, since a sufficient facility for these is automatically present,

e. g. , if z is a struct(rp:l. 0, ip:2. 0), then z[rp] and z[ip] (also z(l) and

z(2)) are its components.

Consider the terminal sentences generated by <ddef> in the

following grammar:

<ddef>:: =$<definiendum> = <definiens >$

< definiendum>:: =< identifier >

<type>::=<identifier>| real | integer| literal] any| nil

<definiens>:: =<structure pattern>| <alternate pattern>|

<sequence pattern>| <reference pattern>

<structure pattern>:: =struct(<pattern component list>)

<pattern component list>:: =<pattern component>| <pattern

component>,<pattern component list>

<pattern component:: =< selector>:<type>

< s ele c to r>:: =< ide ntif ie r>

<alternate pattern>:: =<type>| <type> or <alternate pattern>

<sequence pattern>:; =seq(<type>)

<reference pattern>:: =ref (<type>)

These are a modified version of a subset of the data definition com-

ponent of Standish's Polymorphic Programming Language (PPL).

The semantics associated with the rules of the above are most easily

explained via some examples. Consider the following <dde£>fs :

-15-

1. Complex g struct (rpireal. ip:real)

2. Complexrow c seq(complex)

3. Listofcomplex = complex ox pairofcomplex

4. Pairofcomplex = structfcar: listofcomplex. cdr:listofcomplex)

(1) and (2) define, respectively, complex variables and rows of indef-

inite length of complex variables. (3) and (4) define a list structure

whose atoms are complex variables (for further details, see Section VI B).

We desire the result of writing these definitions to be that the system

generates several functions -

(a) three constructor functions - complex, complexrow

and pairofcomplex which take two, indefinitely many

and two arguments respectively and produce structures

of the appropriate form and

(b) predicates of the form element(x, t) (which we will

write as xet) whose domain is {x| x is a datum)x

{t| t is a <type>} which will now have the value

TRUE for the following pairs of the form (datum, type):

(complex, complex), (complexrow, complexrow),

(complex, listofcomplex), (pairofcomplex, listofcomplex),

and (pairofcomplex, pairofcomplex) as well as those

pairs for which it was previously true.

We now give a precise description of the functions which are added

to the set of defined functions for each<ddef>. In what follows s and

Si will denote <selector's and t and tj will denote <type>'s. I(t)

-16-

is a unique constant associated with the identifier t.

For each<dde£> with <definiendum> the identifier t, create

a struct named t and equal to struct(predicate:a, constructorrb) with

a and b defined as follows:

If the <definiens> is a <structure pattern> of the form

struct(s^:ti)._. set tfpredicate] = {Xx. x[type] = i(t)} and t[constructor] =

{Xx1...Xxn.MKSTR((si:ti).^1 ,type:i(t) j

If the <definiens> is an<alternate pattern> of the form

t^ or . .. or tn set t[predicate] = [Xx. (xetjj or ... or (xet)} and leave

tfconstructor] undefined.

If the <definiens> is a <sequence pattern> of the form

seq(t')set tfconstructor] = {Xxj ... Xxn MKROW(xj(,,,,xn)J and t[predicate] =

{Xx. x(l)et' AILK(x) = seq}. (In this and the next definition, we use

'ref and 'seq' as variables whose value is the internal code for the

types ref and seq , respectively). Here n is indeterminate.

Finally, if the <definiens> is a <reference pattern> of the

form ref(t') set t[predicate] = {Xx. (VLPTR(x)et')A(ILK(x) = ref)} and

t[constructor] = f Xx. MKREF(x)}.

Define the construct and element functions by:

Construct((x^=j , t) = if atomic(t) then undefined else t[con-

structor](xi)i=i ;Xet = if atomic(t) then (ILK(x) = i(t)) else t[predicate](x);

-17-

B. Syntax

Much of the effectiveness that is the goal of the extensible

language is lost if, although data types are flexible, syntax is not.

A programmer who has defined a set of unusual data types for a par-

ticular application will probably want to program in a notation similarly

selected for that application. If, for example, he has defined a data

space that contains list structured objects, he may wish to decree that

'x+y' is to have the value obtained by concatenating x and y whenever

either is a list, and the previously defined value in all other cases.

If his application is such that he must frequently write the equivalent

of the special case "for i = 1 step 1 until n do . . . " of the ALGOL 60

for statement, he may wish to specify that that is the meaning of

"for i -->n do . . . ". In short, he wishes to define a syntax which

emphasizes what is variable in his application, minimizes what is

constant and mirrors the laws of combination and growth of the ob-

jects he is manipulating.

BASEL provides no such facility, but it is intended to be

part of a larger "extensible language facility" which would presumably

permit some kind of syntax variability[6]. GPL contains three methods

for achieving a flexible syntax. First, it permits the definition of new

infix operators with associated priorities. Second, it allows a much

more general form of procedure call than is conventional, e. g. , per-

mitting a user to define "ifmid a of b, c then d else e" as the calling

sequence for a procedure ifmid on five arguments. Finally, GPL

-18-

contains a macro expansion facility whereby after the declaration

procedure dist(a, b);

iff 2 space a, b take macro sqrt((x(a) -x(b))t 2+(y(a) -y(b))t 2);

an occurrence of "dist(s,t)M will be expanded to produce the in line

code "sqrt((x(s)-x(t))t2+(y(s)-y(t))t2)".

A somewhat more general and powerful facility for adding

syntax variability employs the mechanism of the Brooker and Morris

Compiler-Compiler. Here one specifies an augmented BNF grammar

for the language in which one wants to program. The augments can,

for example, be transduction elements which translate a user's ex-

tension of the base syntax into the system's base language[3, 30].

The component of CEL which provides syntax variability is

at present ad hoc, and we intend eventually to provide a facility of the

Brooker and Morris sort in CEL. In the current definition, a user

provides a function, written in CEL, which when invoked will trans-

late a statement in the language in which the user wishes to program

to the equivalent CEL base statement. That it is possible to write

functions in CEL which act as syntax transducers is demonstrated

by some of the examples of CEL programs given below. However it

is equally clear that one does not, in general, want to require a CEL

user to program his own transduction algorithm, and hence we will

replace this mechanism by one of greater sophistication in a future

revised definition of CEL.

-19-

C . Control

Programming languages have several aspects whose system-

atic variation we may profitably study. Thus far we have discussed

the data and syntax of extensible languages. One might also want to

vary the control structure of a language, e. g. to obtain co-routines,

clock driven simulations, multiple parallel returns by subroutines,

parallel processing, continuously evaluating expressions, and so on.

Thus one would expect an ideal extensible language to provide mechan-

isms for varying control that were sufficient to add such features.

Unfortunately, determining what constitutes an optimal (or even a good)

set of primitives from which common control structures can be built,

is at present an unsolved problem. We know of no existing implementa-

tion of an extensible language which provides such features (with the

possible exception of ALGOL 68's parallel execution expression and

PL/l's ON statement) although Standish's design of PPL does make a

number of such provisions which depart from orthodox control struc-

tures[29, 31], Introducing such facilities into CEL would probably

require a drastic departure from the current implementation's scheme

of driving program execution from a pair of push down stacks. Hence

we leave the problem of designing and implementing mechanisms for

including variability of control structures in higher level languages

to future researchers.

-20-

SECTION IV

Conversation and Interpretation

IV. Conversation and Interpretation

Let us now digress temporarily from the subject of extensib-

ility to discuss the styles of debugging typical of each of two broad

classes of languages, the non-interactive and interactive. The first

of these consists of languages which are usually compiled and executed

in a 'batch' environment. Most implementations of PL/1, ALGOL 60,

FORTRAN and COBOL are in this category. On the other hand, there

are interactive languages which are usually executed interpretively

in a form close to that in which the programmer wrote. These languages

permit the user to interact with a running program and to compose,

modify and debug programs at a rapid pace. We generally find these

in a time-shared and conversational environment - such languages as

APL, JOSS, CAL, LISP, and so on.

Detecting errors in a non-interactive environment is usually

a time consuming and tedious task. Typically one submits a program,

for example as a deck of cards, and several hours later gets it back

along with the results of the run. Usually these results are some

mixture of wrong results and error messages. At this point, since

one cannot interactively control and modify the program's execution,

one can track down the source of errors only by

(a) desk checking - carrying out parts of the computation

by hand, as the program directs, with sample inputs or

(b) requesting periodic printouts of partial results during

the program's next run.

One generally employs some combination of these and gets, at the

-21-

end of the second and successive runs, massive amounts of material,

most of it irrelevant to the problem of error detection, which must

nevertheless be scanned through in an attempt to find the significant

parts. If it is the case that one can learn nothing at all from the re-

sults produced after the first couple of errors occurred, then one

is faced with the necessity of iterating this procedure several times

in order to detect bugs in a non-trivial program.

Debugging in languages of the second kind is a much less

unpleasant task. Because the environment is interactive, one can

dispense with core dumps and instead selectively investigate relevant

evidence of errors. Good interactive languages permit one to study

partial results and to phrase questions at the level of the source pro-

gram. In addition one can desk check far more easily than in a batch

system, because one can use the computer to do the mechanical parts

(e. g. hand computation) of desk checking.

In most conversational language systems there are a num-

ber of features that further ease the debugging process. APL, for

example, a prime example of a well-constructed conversational lan-

guage system, allows the programmer to set break points in the pro-

gram which, when encountered during execution, will suspend exe-

cution and return control to the user's teletype. He can then examine

and modify the values of variables before continuing the computation

at the break or any other point. APL further permits the user to trace

-22-

the execution of a subset of program statements, i. e„ to specify that

every time one of these statements has been executed, the number of

the statement and its result are to be output on the user's teletype.

Once an error has been located by these means, a user may edit single

statements or larger parts of the program, and immediately inves-

tigate the effect of the changes made[l, 15]. Finally, we note that in

a conversational system one can take advantage of strange occurrences

(e. g. , a computation taking longer than it should or an output that

differs from expectations) to look at the effect of an error near its

source. In batch systems, by comparison, one frequently detects

the presence of an error via some subtle change at a remote place

in the program or its output.

Lest we be accused of unfairly stating the relative merits

of interactive and non-interactive systems, we hasten to point out that

experimental comparisons of productivity in these two media are not

conclusive. It is difficult to obtain good comparisons between pro-

grammers working in different languages and at the same time it is

unfair to draw conclusions from the performance of a batch language

in a time-shared system or vice-versa. Thus we can only state our

own distinct preference for conversational systems and point to the

similar statements and results of others[l4, 24, 27].

It is certainly the case that interpreted programs do not

run as rapidly as compiled versions of the same programs. However,

in many applications such factors as the programmer's ability to

-23-

absorb results acts as a more restrictive constraint than running time.

Moreover, one can often achieve the best results of both compilation

and interpretation by including, in an interpreted language, a compile

operator (e. g. the one in LISP) which one applies to a function after

one is through debugging it. It is converted into machine code and

thereafter runs at the rate of a compiled program. Finally there is

evidence (qv. [14]) that total costs of man hours and machine time

are lower in time-shared systems.

We claim that the dynamic style of programming in a con-

versational system meshes very nicely with the flexible nature of ex-

tensible languages. The resulting freedom is a major step toward

making the process of programming as natural as possible for the pro-

grammer. This is consistent with the philosophical objective, in

extensible languages, of letting a programmer express his thoughts

about a problem with a minimum of artifice or translation.

The pressure of time has prevented the inclusion in CEL's

current implementation of a full-fledged conversational debugging

facility. One can do automated desk checking via an immediate exe-

cution feature, but this would not be adequate in the final form of the

language. We hope to add a break point debugging and selective trace

facility such as that of APL.

The current implementation does not contain, again because

-24-

of the pressures of time, a text editing component. Until such a com-

ponent can be implemented, an ad hoc provision has been made, where-

by CEL programs can be created and edited using the PDP-10's TECO

(Text Editor and Corrector) Program. This measure has sufficed

for the creation of the CEL programs given below.

-25-

SECTION V

Description of CEL

Let us now describe CEL in some detail. The fragments

of CEL programs given above are written in the language defined by

the standard front end syntax of the current implementation. However,

for the purposes of this section, we revert to thinking in terms of

CEL's base language. This is defined by the following grammar

with root symbol <program>:

1 <program>::=<message>

2-3 <message>::=<function definition>|<statement

4 <function definitions: =$<function headerxfunction body>$

5 <function headers ::=< identifiers (< identifier list>)<identifier

list>;<identifier list>;

6-7 <identifier list>::= empty|<identifiers{ ,<identifiers}*

8 <function body>:: ={< statements}

9 < statements:: ={<expression>}

10-14 <expressions:: =<identifiers| <constants) ({< expressions})

<expres sion> :<identifiers | <expres siort>]<identifiers

In this grammar, ::=, | ,{,}, + and * are metasymbols. { A}* means

zero or more A's. {A} means one or more A's. identifiers and

<constantS are lexical tokens whose composition need not further con-

cern us here.

A CEL program is a sequence of either function definitions

or direct commands. The former result in the saving of the defined

function for later execution, whereas the latter usually invoke one or

more previously defined functions. We see from (9) that a statement

-26-

is a sequence of expressions - the associated meaning is that the ex-

ecution of a statement consists of the successive evaluation of its

constituent expressions, read from left to right. The value of an ex-

pression e is recursively defined as follows (the value assigned to

<identifier> is later qualified):

Val(e) = if e is a constant then e else

if e is an identifier then if an assignment operator

has been called with the identifier as the left

operand, then the value of the right operand at

the last such call within the scope of the identifier

and NIL otherwise else

if e is of the form e']i then

if e' is a struct with a component named i then val

applied to the i component of e' and otherwise error

else

if e is of the form e':i then val(e') else

if e is of the form (e^ e^ . . . en e') then

if e' is a row then

if n = 1 and val(ei) is a positive integer m

< length(e') then val applied to the m component

of e' and otherwise error else

if e' is a function then (see below) else

error;

-27-

We must now define the value of the expression e = (e^ ... en e')

where e' is a function. If n is not the number of arguments that e'

requires, there is an error condition. If e' is a library function, the

value and/or side effects due to evaluating it with arguments e^, . . . , en

are specified in Appendix A. Otherwise e1 is a programmer defined

function. E is then evaluated by calling e', supplying it with val(e[),

. . . , val(en) as arguments and using the result(s) returned by e' at its

exit as val(e).

Finally we define the process of calling a programmer defined

function f with arguments ei,. . . , en. Suppose the header of f is

"f(xj,. . . »Xgjr^, . . . , r ;Lf. . . , 1 ;" and that it contains k statements,

numbered 1, . . . , k. Then to call f we

(1) Set a program counter c to one.

(2) Execute the c'th statement of f ,

(3) Set c to c+1. If ok then exit returning r., . . . , r

as results. Otherwise, proceed from (2).

(A transfer statement achieves its effect by changing

the value of c).

An identifier i is evaluated within f as follows - if i iß not one

of the locals of f (i. e. one of the x^'s, r^'s or l^'s) then its value is

the same as if i had been encountered outside f. If i is a local of f,

its value is that last assigned to i since f was last entered. If no such

assignment has been made and i is not one of the x^'s, then val(i) = NIL.

If i is x-, then val(i) = val(ej). An assignment within f to a local of

f has no effect on the value of another identifier of the same name

-28-

existing outside f. Here "outside f" means either inside some other

function, inside any other call of f (if f is recursive) or outside all

functions.

This base language has been chosen for CEL for several

reasons. It is relatively simple yet powerful enough to express all

the constructs we wish to include in CEL. Statements in it can be

executed efficiently since it is SLR(l) (i. e. , at any stage in a parse,

the next applicable reduction is unambiguously determined by inspec-

tion of at most one symbol to the right of the current symbol) and

indeed, the current implementation does a small amount of prepro-

cessing to make it SLR(O). There are no reserved words, which makes

learning the language easier than it would otherwise be. Finally,

we can translate from a number of front end syntaxes to this base with-

out much difficulty. On the other hand, programs written in the base

are relatively unreadable. Because we always intend to program in

some front end syntax, this is not a problem.

CEL's standard front end syntax in the current implementation

is defined in terms of the base syntax by the following transduction

grammar G:

-29-

<statement>::=<identifierS:< expressions @ T< expressions ^identifiers

< statements:: =<expres s ions

<expression>:: =<termSa< expressions Q T(<term><expression>f(a))

<expression>:: = a<expressions @T(<expression>f(a))

< expressions:: =<term>

<termS::=<constants|< identifiers

<termS :: = (< statements) @< statements

<terms:: =<termS() @_(<termS)

<term>::=<termS({statement>}) @ ([<statements] <termS)

<termS:: =<term>^identifiers {^identifiers] *] @ <term>]<identifiers

{^identifiers}*

There is a version of each rule containing "a" for each infix operator

that is to be used. For each such operator, f(a) is the name of a CEL

function that computes its value for the correct number of arguments.

The base language translation of a statement written in this

syntax may be determined by following this recipe -

(1) Obtain a parse tree in G for the statement.

This is a particularly easy process since G

is an operator precedence grammar with f

and g functions (qv. [ll] and Appendix B).

(2) Rearrange the sons of each nonterminal node x

(possibly deleting some and inserting others)

according to the transduction element for the

rule of g that corresponds to the node and its

-30-

sons.

(3) Read off the terminal nodes of the modified tree in

left to right order, obtaining the translated statement.

-31-

SECTION VI

Programming in CEL

A. An Introduction

We now present several extensions of CEL. Each consists

of a number of functions which manipulate the data types of the exten-

sion. In order to conveniently explain how they work, we will insert

descriptive text between fragments of the actual CEL text, though of

course this description would be omitted during a computer session

using CEL*

The program text was produced by a device which uses " - "

for ■»-->■' and " * " for "*'«.

-32-

B. List Processing

The major data types of this extension are defined as follows:

Atom = integer or real or literal or nil

Pair = struct(car:listel, cdrilistel)

Listel = atom or pair

The data type pair corresponds to the dotted pair of LISP. We first

define several of the elementary functions of LISP -

$CONS(A,B)R55
[l] R<--MKSTR(CAR:A,CDR!B)

$

$CAR(X)R$5
[1] AT0M(X)->4
[2] R<~ X[CAR]

$CDR(X)RJ5
[1] AT0M(X)->3
[2] R<--X[CDR]

$AT0M(X)RJ*
[1] R<~ILK(X)+4

Cons is a constructor function that takes a pair of arguments,

presumably of type listel, and makes a pair out of them. Car and cdr

are generalized selectors - they return the appropriate component if

it exists, but NIL if it doesn't (i. e. if the argument is an atom). They

accomplish this by, for atomic arguments, exiting from the procedure

without making an assignment to the result R, and hence return NIL

according to the rules given in Section V. Atom is a predicate

-33-

which distinguishes atoms from non-atoms using the fact that in

this extension the only non-atoms are structs, and that any struct

x satisfies ILK(x) = 4. We next define a function list which creates

structures corresponding to the list of LISP, i. e. , data x satisfying

(1) xelistel and

(2) if atom(cdr(x)) then cdr(x) = NIL.

$LIST(X)RJ5
[1] (lLK(X)=6)-»4
[2] R<—CONS(X,NIL)
[3] +20 , x
[4] J<--LNGTH(X)
[5] R<_C0NS(X(J),R)
[6] (j=l)->20
[7] J<~J- 1
[8] +5

Lists are a proper subset of pairs, but are often easier to deal with

in that we can view car as returning the first element of the list and

cdr as returning the list obtained by deleting the first element of the

original list. Since we want the constructor list to be variadic, it is

defined so that it will accept either a single argument or a row of

arguments, i. e. , list(x) = if atomic(x) then cons(x,NIL) else if ILK(x)

= row then cons(x., cons(. . . , cons(x , NIL). . .) where n i s the length

of x.

Finally we can define a number of functions on lists - these are

standard functions in LISP, implemented by means of great reliance on

-34-

the idea of recursion. Append creates a list of all the elements of

its arguments lists. Reverse creates a list in which the elements

of the original list appear in the reverse of their original order.

Showd and showp make recursive calls on each other in order to

print a list showing the list structure with parentheses. Seek takes

as arguments an atom and a list of pairs, and returns the list whose

elements are the right halves of all pairs whose left half is the atom.

Replace changes all occurrences of an atom in a list to another atom.

Same determines whether two list structures are the same and member

determines whether one list is a sublist of another. These last two

are used by union to construct a list whose elements are those in the

union of the sets of elements of the two argument lists. Finally, map

applies a function to successive cdrs of a list and returns the final cdr

(NIL for a list) as result.

$REPLACE(A,B,L)R$5
[1] R<~B
[2] (L=A)-7
[3J ATOM(L)-»6
[4] R<—CONS(REFLACE(A,B,L[CAR]),REPLACE(A,B,L[CDRj))
53 +7

[6] R<~L
$

$SAME(S,T)R55
AT0M(S)+5
AIDM(T)->5
R<—SAME(CAR(S),CAR(T))XSAME(CDR(S),CDR(T))

1
2

L 3 J

[5] R<—s-T
$

-35-

$SH0WD(L)SS
[1] ATOM(L)-*7
[2] TYPE("(")
[3] SHOWD(L[CAR])
[4] SHOWP(L[CDR])
[5] TYPEC')")
[6] +8
[7J TYPE(L)

[1]
2,|
31

■4
[5]
t6]

$SH0WP(L)?J
(L=NIL)->7
AT0M(L)-»6
SHOWD(CAR(L))
SHOWP(CDR(L))
+7
TYPE(L)

")

[1]
[2]

[1]
2

[3]
[4
[51

y 9 $SHOW(L
SHOWDtL
TYPE(n

SSEEK(L,A)R$5
ILK(L)=0)^6
(At=CAR(CAR(L)))-*4
R<~C0NS(CDR(CAR(L)),R)
L<—CDR(L)

$HEVERSE(X)RJJ
[1] (ILK(X)=0)->3
[2] R<~ APPEND (REVERSE (CDR(X)) ,CONS (CAR(X) ,NIL))

$

$LENGTH(X)RJ5
[1] AT0M(X)->4
[2] R<—1+LENG1H (CDR(X))
hi -5
[4] R<—0

$
$APPEND(X,Y)R$$

[1] R<~ Y
[2] (lLK(x)=0)-4
[3] R<—CONS (CAR (X), APPEND (CDR(X) ,Y))

$

-36-

1
2

4

$MEMBER(S,T)R5 5
AT0M(T)->4
R<—SAME(S,T)+SAME(S,T[CAR])+MEMBER(S,T[CDR])
+5
R<„S=T
$

$UNION(Ll,L2)RjS5
1] (L2=NIL)->6
2] MENIBER(L2[CAR],L1)->4

[3] S<—C0NS(L2[CAR],S)
"41 L2<--CDR[L2]
[5] -1
[6] R<—-APPEND (LI, S)

$MAP(F,L)RJ5
lU P(L)/ N

[2] AT0M(L)->5
[3] L<—CDR(L)
[4] -1
[5] R<—L

$

Some instances of output obtained during runs with this extension

are as follows:

P<—LIST(MKR0W(nA\l,"B\2))
SHOW(P)

(A1B2)
PP<~LIST(MKROW(P,P,P))
SHOW(PP)

((A1B2)(A1B2)(A1B2))
PP[CDRjCAR]<—LIST(MKROW(4,5,5))
SHOW(PP)

((A1B2)(455)(A1B2))
Q<~ APPEND (PP,PP)
SHOW(Q)

((A1B2)(455) A1B2)(A1B2)(455)(A1B2))
R<_LIST(MKROW(l,2,LIST(MKROW(f,A,,,nB")),3))
SHOW(R)

(12(AB)3) , . ..
SHOW (REVERSE (R))

(3(AB)21)
MAP(SHOW, R)

[12(AB)3)
2(AB)3)-
(AB)3)
3)

-37-

S<~LIST(MKROW(CONS(MA,,,l),CONS(nB,,,2),CONS(,,C,,,3)))
SHOW(S)

((A1)(B2)(C3))
SHOW (SEEK (S," A1'))

(1) / X S<_APPEND(S,S)
SHOW(s)

((A1)(B2)(C3)(A1)(B2)(C3))
SHOW (SEEK (s/V))

(11)
R<_LIST(MKROW(nAM ,!IB"))
S<~LISTCMKROWTA" ,R,"Cr'))
T<~ LIST(MKROW(R,S/An,R))
SHOW(R)

(AB)
SHOW(S)

(A(AB)C)
SHOW(T)

((AB)(A(AB)C)A(AB))
t(S,T)

1

0

2

MEMBER!

MEMBER(T,S)

MEMBER(R,T)

-38-

C Polynomials

Having defined a definition set for lists, we can use it to
n . '

model polynomials. A polynomial .£. a.x is representable as a

vector (a.) ~ but this representation is inefficient if many of the

a.'s are zero. In that case we prefer to represent a polynomial

as a list of terms, where

Term = struct(deg:integer , coef:integer).

The zero polynomial is the NIL list. The following functions then

suffice to construct, output, add and multiply polynomials. Examples

of the output they produce are given.

$ADDP0LY(X,Y)RJD1,D2,SJ
I] (X{=NIL)-»4
2] R<—Y

[3J +20
.4] (Y^NIL)-*7
[5] R<—X
6] +20
7] D1<~CAR(X)[DEG]
8] D2<—CAR(Y)[DEG]
9] (Dl=(=D2)-*l6

' 10] S<~CAR(X) [COEF]+CAR(Y) [COEF]
II] (S=|=0)-»l4
12] R<~ADDPOLY(CDR(X),CDR(Y))

[13] +20
[14] R<—CONS(MKSTR(DEG:DI,COEF:S),ADDPOLY(CDR(X),CDR(Y)))
[15] +20
[16] (Dl-D2)->19
[17] R<—C0NS(CAR(Y),ADDP0LY(X,CDR(Y)))
[18] +20
[19] R<~C0NS(CAR(X),ADDP0LY(CDR(X),Y))

-39-

$SHOWPOLY(X)jL$
[I] (X=NIL)->17
[2] L<—CAR(X)
[3] ((L[COEF]=l)xL[DEG]fO)->5
[4] TYPE(L[COEF])
[5] (L[DEG]=0)->10
[6] TYPE(,fXu)
7J (L[DEG]=1)->10

[8] TYPE("T")
[9] TYPEtLfDEG])
[10] (CDR(X)=NIL)-*17
[II] X<—CDR(X)
[12] CAR(x)[C0EF}*l4
[13] -2
[14] TYPE("+n)
[15] -*2
[16] TYPE(n0")
[17] TYPB("

[1]
[2]
[3]
[4]

$P0LY(R)P$J5
J<~LNGTH(R)
P<--CONS(MKSTR(DEG:R(J),COEF:R(J- I)),P)
J<_J- 2
J+2

$NULPOLY(Pl,P2)Rt5
[1] ((Pl=NIL)+P2=NIL)->3
[2] R<—ADDP0LY(DIST(CAR(P1),P2),MULP0LY(CDR(P1),P2))

$DIST(T,P)RJL1,L2*
[1] (P=NIL)-»5
[2] Ll<--T[DEG]+PLCAR? DEG]
[3] L2<~T[COEF]xP[CAR5COEF]
[4] R<—C0NS(MKSTR(DEGtLl,C0EP!L2),DIST(T,P[CDR]))

-40-

-I*-

((zr ä) ÄiOciaav) Äi OdMOHS
S+3iXT-5iXe

(Z)äIOJMOHS

SiX6+eiX9+l7^X
((Ä'XjÄlCHTnNjÄlOcIMOHS

xe+six
(Ä)ÄlOcIMOHS

((V £'E'T)t\o}imjxrioa~>A

D For mula s

In the next extension we will manipulate formulas, i. e. , data

defined by the following definitions:

Form = struct(lp:formula, op:literal, rp:formula)

Formula = form or atom

Atom = literal or real.

First we define several functions which perform arithmetic operations

on formulas and do some simplification (using the identities l*x = x*l = x,

0+x = x+0 = x and 0*x = x*0 = 0). The functions named SADD, SMUL,

SSUB and SDIV are those invoked by the infix binary operators +, *,

-. and /, respectively. They normally are functions that take any

combination of integer and real arguments, but here we redefine

them as follows:

REAL<—-1
VARIABLE<~3
STRUCT<—4

$PORMULA(X,Y,Z)R55
[1] R<_MKSTR(LP:X,OPtY,RPtZ)

SADD(X,Y)ZJ5
X=0.0)+11
Y=0.0)-*9
ILK(X)=REAL)-*6

Z<—FORMULA (X,"+" ,Y)
-»12
(lLK(Y)^REAL)->4
Z<— RPLUS(X,Y)

Z<~X
[10] -^12
[11] Z<—Y

1
2

[3
4

[5]
6

9]

-42-

'1*1
'2 "I
3
4
5
6

;7j
8|

üSSUB(X,Y)Z$$
y=o.o)->5

(lLK(x)=REAL)->7
Z<— FORMULA (X/1-11 ,Y)
-9
z<—x
+9
(lLK(Y)+REAL)-»j
z<— RSUB(X,Y)

1
'2'|

r9!l
10
ll
12

,13,
14
:i5

:fSMUL(X,Y)Z55
Y=1.0)-»12
X=1.0)->10
X-O.OJ+8
Y=0.0)->8
ILK(X)=REAL)->14

Z<--PORMULA(X/X
M
 ,Y)

->16
Z<—0.0
-►16
z<—y
->16
z<~x
+16
(ILK(Y)+REAL)-*6
Z<—EMULT(X,Y)
$

$SDIV(X,Y)Z}5
I] (Y=1.0)->8
2] X=0.0H6
;3] (ILK(X)=REAL)->10
;4] Z<~ FORMULA U,"/", Y)
'5] +12
6] Z<—0.0
7] +12
8] Z<—X
"9j +12
.10] (lLK(Y)fREAL)->4
II] z<—RDIV(X,Y)

$

-43-

We now define recursive functions which output formulas, differ-

entiate them and substitute formulas for variables in other formulas.

Examples of output follow the definitions.

$PRINT(X)5 5
[1J (ILK(X)=STRUCT)-»4
[2] TYPE(X)
[3] ->9
[4] TYPE("(")
[5] PRINT(X[LP])
16] TYPE(X[OP])
[7] PRINT(X[RP])
[8] TYPE('T)

")

[1]
[2]

[1]
2
[3:

[5:
[fi!

[9:
10
11
12
[13
[14

16
17
18

[19]
20
[21]
22"

$SHOW(X)5 5
PRINT(X)
TYPEC'

$

&DERIV(E,X)R$UDASH,VDASH$
ILK(X)fVARIABLE)->23
E=X)-*20

;ILK(E)=STRUCT)->5
.22

UDASH<--DERIV(E[LP],X)
IfX)

->14
->16
-18

VDASH<~DERIV(E[RP]
fE[0P]=" + n)-»12
'E[0P]=M-M)^ä

;E[OP]=
,,
/
,,
I

!E[0P]=nx")
+23
R<—-UDASH+VDASH
-23
R<—UDASH-VDASH
+23
R<~((UDASHxE[RP])-VDASHxE[LP])/E[RP]xE[RP]
->23
R<-- (UDASHxE[RP])+VDASHxE[LP]
-23
R<--1.0
-23
R<_0.0

-44-

1
2
3

$SUBST(E,X,A)R$S
(ILK(X)±VARIAELE)-*9
(lLK(E)fSTRUCT)->5
R<—PORMULA(SUBST(E[LP],X,A),E[OP],SUBST(E[RP],X,A))
+9
(E=X)+8
R<—E
+9
R<—A
$

F<~ (,,A,,+,,X,,)/(,,B,V,Xn)
SHOW(DERIV(F/X"))

(((BfX).(A+X))/((BfX)x(BfX)))
Q<_PxF
SHOW(Q)

(((A+X)/(BfX))x((A+X)/(&fX)))
SHOW(DERIV(Q,nX"))

(((((BfX)-(A+X))/((BfX)x(BfX)))x((A+X)/(BfX)))+((((BfX)-(A+X))/((B+X)x
(BfX)))x((A+X)/(BfX))n xx

SHOW(SUBST(F,f,An ,F))
((((A+X)/(BfX))+X)/(BfX))

-45-

E Vectors

In this extension we define functions that do arithmetic with

3-vectors, where

3-vector = struct (i:arith, jtarith, k:arith)

Arith = real or integer.

The infix arithmetic operators are redefined to accept arguments

that are any combination of arith and 3-vector and to produce appro-

priate results. Par and perp are predicates that test whether a

pair of vectors are, respectively, parallel or perpendicular. The

definitions and some results are as follows:

$VECTOR(A,B,C)R5 5
[1] R<_MKSTR(l:A,J!B,KfC)

$

ADD<—SADD
SUB<—SSUB
MUL<— SMUL
EQ<~EQUAL

$SADD(X,Y)R5 5
[1] R<—OP(X,Y,ADD)

$SSUB(X,Y)R5 5
[1] R<—OP(X,Y,SUB)

$0P(X,Y,Z)RJL5
[1] (ILK(XU4J^7
2] (lLK(Y)f4)^5

fc3 R<~VECT0R(Z(X[I],Y[I]),Z(X[J],Y[J]),Z(X[K],Y[K]))
4] -»11
5] Y<—VECTOR(Y,Y,Y)

->3
(ILK(Y)W)-*10
X<--VECTOR(X,X,X)
-►3

:10] R<—Z(X,Y)

-46-

V
[5]

$EQUAL(X,Y)RJJ
TlLK(X)+4}-*5
(ILK(Y)^)-*5
R<—(X[l]-

R<~EQ(X,Y)

Y[l])x(X[J]==Y[J])x(X[K]=Y[K])

[1]
[2]
[3]
[4]
5

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

$SMUL(X,Y)R5C1,C2,C3$
(ILK(X)44)-KL0
(IK(Y)+4)->8
Cl<--(X[J]xY[K])-X[K]xY[J]
C2<~ (X[K]XY[I] }-XL I]XY[K]
C3<~(X[l]xYlJ])-X[J]xY[l]
R<—VECTOR(C1,C2,C3)
-►14
R<—VECTOR(X[l]xY,X[J]xY,X[K]xY)
-►14
(lLK(Y)+4hl3
R<~VECTOR(XXY[I],XXY[J],XXY[K])
+14
R<~MUL(X,Y)

")

$SH0W(X)jJ
[I] TYPE(X[I]J
[2] TYPE("I")
[3] IFLJM(5,X[J])
[4] TYPE(V')
[5] TYPE(X[Jl)
[6] TYPE(,,Jn)
[7] IFLJM(9,X[K])
[8] TYPE(V
[9] TYPE
[10] TYPE 1
[II] TYPE!

$

$DOT(X,Y)R55
[1] R<--(X[l]xY[l])+(X[j]xY[J])+X[K]xY[K]

$PERP(X,Y)RJ5
[1] R<_ZER0(D0T(X>Y))

-47-

$PAR(X,Y)R$L$
[1] L<—XX Y
[2] R<--ZERO(L[l])xZERD(L[J])xZERO(L[K])

$

$ZERO(X)Rj;
[1] R<~(X=0)+(X=0.0)

$

R<„VECTOR(1,2,5)
S<--VECT0R(2,-3,7)
SHOW(R)

1I+2J+5K
SHOW(S)

2I-3J+7K
SHOW(R+S)

3I-1J+12K
SHOW(RxS)

29I+3J-7K
DOT(R,S)

31
PERP(R,S)

0
PAR(R,S)

0
T<~ 2xR
SHOW(T)

2I+4J+10K
PAR(R,T)

1
PERP(R,RXS)

1
SHOW(4+R)

5I+6J+9K
SHOW(R+3)

4I+5J+8K

-48-

F Trees and Syntax

In this extension we create trees and use them in various

syntax manipulations. A tree is defined by

Tree = struct (fatherrptr, rightbrothenptr, firstsomptr,

value:atom)

Ptr = NIL £r pointer

Pointer = ref(tree)

Atom = literal or integer or real or NIL.

First we redefine the infix binary operators so that they will create

trees, i. e. , so that a a b (where a is a binary operator) is a tree

whose value is a, whose rightbrother and father are NIL, and whose

firstson is a tree with value = a, father = a a b, firstson = NIL, and

rightbrother = a tree with value = b, rightbrother and firstson = NIL,

and father = a a b. This is an instance of the use of ref 's to share

data since the node with value a is shared as father by each of its

sons. This representation of a tree with three links associated with

each node is that suggested by Cheatham in [7],

$SADD(X,Y)RJ5
[1] R<„ OPER(X,Y," + H)

$

$SSUB(X,Y)R$5
[1] R<~OPER(X,Y,n-n)

$SMUL(X,Y)R$5
[1J R<~OPER(X,Y/x")

$SDIV(X,Y)R55
11J R<~0PER(X,Y,,7n)

-49-

$0PER(A,B,C)R$5
[I] TILK(A)=MU->8
[2] (lLK(B)+4)->10
[3] A [RIGHTBROTHER]<---MKREF (B)
[4] R<_MKSTR(FA"IHERtNIL,RIGHTBROTHER:NIL,FIRSTSON!MKREF(A),VALUE!C)
[5] A [FATHER]<—MKREF(R)
[6] B [FATHER]<—MKREF(R)
[7] +12
[8] A<~MKSTR(FATHER:NIL,RIGHTBROTHER:NIL,FIRSTSONtNIL,VALUE:A)
[9J -2
[10] B<—MKSTR(FATHER:NIL,RIGHTBROTHER:NIL,FIRSTSON:NIL,VALUE:B)

[II] ->3

The problem of how to output the constructed structure is

somewhat more difficult in this than in the previous extensions given,

particularly since a tree is an inherently two-dimensional object

and we wish to display it in a linear medium. There are several

standard ways of doing this, all involving the traversal of the nodes

in some specified order. We show three typical ones. In prefix

walk order we start at the roots of the tree and at each step go to

(1) the firstson of the current node if there is one or

(2) the rightbrother if there is no firstson (in general, the

right neighbor - the rightbrother of the closest ancestor

who has a rightbrother).

In suffix walk order, we traverse terminal nodes in left to right order,

always traversing an interior node as soon as we have encountered all

of its sons. Finally, in constant depth walk order, we traverse first

the root, then all sons at depth two, and so on. The prefix and suffix

functions use explicit recursion to traverse subtrees, whereas the

constant depth function uses a push down stack, i. e. , a datum defined

-50-

by

")

Stack = struct (stk:rowlOO, level;integer)

RowlOO = seq (100).

Output obtained with these functions follows their definitions.

$SHOWPREFIX(X)$5
[1] SHOWP(X)
[2] TYPET

$

[1]
[2]
[3;
[4]
5

[6]

.9.
[10J

$SHOWP(X)*,L5
TYPE (X[VALUE])
(X[FIRSTS0N]=NIL)->11
TYPE(n(")
L<—VLPTR(X[FIRSTSONj)
SHOWP(L)
(L[RIGHTBROTHER]=NIL)-HO
TyPE(n;i)
L<--VLPTR(L[RIGHTBRDTHER])
+5
TYPE(")n)
$

1
2
3]

5]
6

9
10]

$SHOWS(A)$L5
(AIFIRSTS0N]=NIL)-*10
TYPE(M(")
L<—VLPTR(A[FIRSTSON])
SHOWS[L)
(L[RIGHTBR0THER]=NIL)->9
TYPE(",")
L<—VLPTR(L[RIGHTBROTHER])
->4
TYPE(,,)n)
TYPE(A[VALUE])
$

")

$SHOWSUFFIX(A)5 5
[1] SHOWS(A)
[2] TYPE(I?

$

-51-

$SH0WCD(A)5X,I$
11J S1<~MKSTR(STKJMKNRW(50),LEVEL!0)
[2] PUSH(MKREF(SI),MKREF(A)J
[3] S2<~MKSTR(STK!MKNRW(50) ,LEVEL:0)
[4] ASIGN(l,l,TYPE(n(M))
[5] X<--VLPTR(Sl[STK](lJ)
[6] TYPE " ")
[7] TYPE (X[VALUE])
[8] (X[FIRSTS0N]=NIL)+10
[9 3 PUSH(MKREF(S2),X[FIRSTSON])
[10] (X[RIGHTBR0THER]=NIL)->13
[11] X<~VLPTR(X[RIGHTBROTHER])
[12] +6
[13] (l=Sl[LEVEL])->l6
[14] I<—IPLUS(I,1)
[15] +5 x %
[16] TYFE(")")
[17] (S2[LEVEL]=0)->21
[18] Sl<—S2
[19] S2[LEVEL]<—0
[20] -*4

$

")

$SHOWCONSTANTDEPTH(A)5 5
[1] SHOWCD(A)
[2] TYPE("

[1]
[2]

$PUSH<
VLPTR(
VLPTR(

Y) s •
' [LEVEL]<~VLPTR(X)[LEVEL]+1
[STK] (VLPTR(X) [LEVEL])<—Y

-52-

Y<~ (3f7)-(4x8)/5
SHOWPREFIXfY,

-(+(3,7),/(x(4,8),5)
SHOWSUFFIX(Y

((3,7)+,((4,8)x,5)/)-
SHOWCONSTANTDEPTH(Y)

(-)(+ /)(3 7 x 5)(4 8)
A<—Y+Y
SHOWPREFIX(A)

+(-(+(3,7),/(X(4,8),5)),-(+I3,7),/(X(4,8),5)))
SHOWCONSTANTDEPTH(A)

(+)(- -)(+ / + /)(3 7 x 5 3 7 x 5)(4 8 4 8)
SHOWSUFFIX(A)

(((3,7) + ,((4,8)x,5)/)-,((3,7K,((4,8)x,5)/)-)+

-53-

A major application of the data type tree occurs in the prob-

lem of parsing a sentence generated by a general context free gram-

mar. Rather than show functions which solve this general problem,

we develop routines which parse a sentence in a context free grammar

which is simple precedence with f and g functions (qv. [7]). The

variable grammar is a representation of a simple precedence gram-

mar, namely

S ::= E RPAD

E ::= E+T

E ::= T

T ::= A

T ::= AT

The first rule is not included in the representation, since it is rec-

ognized "by hand" by the functions we define. Parse employs a

push down stack to save the fragments of the parse tree constructed

at some stage in a parse, and uses the f and g functions to decide

when to make a reduction. Match makes reductions, recognizing

the rule to be used, and growing the appropriate piece of tree. When

parse sees the right pad symbol, it constructs the final tree fragment -

the root node, and returns this as result. The functions and some

typical output are:

-54-

1
2

["3
4

I
9J

$PARSE(X,GR,F,G)RjZ,RR,Xl,l5
Z<—-MKSTR(STK!MKNRV(50),LEVEL:0)
RR<—MKREP(Z)
ASGNC(X1,VLPTR(X))
PUSH(RR,MKREF(N0DE(NIL,NIL,NIL,X1(1))))
I<~2
(F(VLPTR(Z[STK](Z[LEVEL]))[VALUE])-G(X1(I)))->11
PUSH (RR,MKREF(N0DE(NIL,NIL,NIL,Xl(l))))
(Xl(l)=nRPADn)->13
I<—1+1

[10] -*6
[11] MATCH(RR,GR)
[12] -*6
[13] I<—1
[14] VLPTR(Z[STK](l))[RIGHTBROTHER]<— Z[STK](l+l)
[15] VLPTR(Z[S

,
TK](I))[FATHER]<—MKREF(R)

rl6] I<—1+1
t17] (l^Z[LEVEL])->l4
[18] R<—NODECNIL^IL^ZtSTKjflJ/'S")
'19] VLPTR(Z[STK](I))[PATHER]<—MKREP(R)

$MATCH(RR,GR)jI,M,Z,J,K,N,S,T$
I<—1
ASGNC(T,VLPTR(GR))
ASGNC(Z,VLPTR(RR))
J<—LNGTH(T(l)[RP])
K<—J

1]
2]

[3]

[5]
[6] N<—Z[LEVEL]+K-J
[7J N+10
[8] I<—.1+1
[9] •***
10] (T(l)[RP](K)=VLPTR(Z[STK](N)) [VALUE])->12

1 -*8
K<—K- 1
K->6
EQUAL(M<—N,M,Z[LEVEL])-*19
VLPTR(Z[STK](M)}[FA0HER]<—MKREF(S)
VLPTR(Z[SIK](M))[RIGHTEROIHER]<~Z[STK](M+I)
M<—-M+l

[10] (M^=Z[LEVEL]V>15
[19] VLPTR(Z[STK](M)) [FATHER]<—MKREF(S)

' Z[LEVEL]<—N
S<~NODE(NIL,NIL,Z[STK](N),T(l)[LP])

[22] Z[STK](NJ<--MKREF(S)
T -55-

11]
[12]
[13'
14
[15]
16"

$N0DE(A,B,C,D)R$5
[1] R<~ MKSTR(FATHER:A,RIGHTBR0THERSB,FIR3TS0N:C,VäLUE:D)

$F(X)RJ5
[1J EQUAL(X,nSu ,R<--0)->7
[2] EQUAL CX/'E",^—0)->7
[3] EQUAL(X,nTn,R<--l)-*7
[4] EQUAL (x,nAM,R<~l)->7
[5] EQUALfX, "+" ,R<--0}-»7
[6] EQUAL(X,nRPAD" ,R<—0)->7

$G(X)R55
[1] EQUAL(X,"S",R<—0)-*7
[2] EQUAL(X/EM,R<--0)->7
[3] EQUAL (X,"T

!!
,R<—-l)->7

[4] EQUAL(X,"An,R<~2}->7
[5] EQUAL(X,n + n ,R<—0)->7
[6] EQUAL(X,"RPAD" ,R<—-0)->7

RULE1<—MKSTRfLP^E^RPJMKROWP'EVV',MTn))
RULE2<~MKSTR(LP:nT,^RPtMKF0w(,,AM,^Tf,))
RULE3<~MKSTR(LP:"E",RP tMKROW("Tn))
RULE4<~MKSTR(LP:nT" ,RP:MKROW(MAn))
GRAMMAR«--MKREF(MKROW (RULE1, RULE2, RULE3,RULE4))
X<~MKREF(MKROW(nAn,nA!" li + l,,IIAli,,, + ,l,l,A,f ,,fRPADÄ))
Y<—PARSE (X, GRAMMAR, F,G)
SHOWPREFIX(Y)

S(E(E(E(T(A,T(A))),+,T(A)),+,T(A)),RPAD)
SHOWSUFFIX(Y

(((((A,(A)T)T)E,+,(A)T)E,+,(A)T)E,RPAD)S
SHOWCONSTANTDEPTH(Y)

(S)(E RPAD)(E + T)(E + T A)(T A)! A T)(A)

-56-

G Complex and Rational Arithmetic

In this extension we redefine the.arithmetic operators to

accept arguments that are a pair of complex numbers (complex =

struct (rp:real , ip:real, type:"comp")) or a pair of rationals (rational:

struct(num:integer, deminteger,type: "ratio")) as well as the atomic

arguments they previously accepted. Complex is the constructor

for complex numbers and SDIV constructs rationals when called

with a pair of integer operands. Hence the infix operator "/" acts

sometimes as a constructor and sometimes as a normal divide op-

erator. We note that the rational constructor function always pro-

duces a rational whose num and den components are coprime, using

the gcd (greatest common divisor) function to this end. The func-

tions and some output produced by them are as follows:

DIV<—SDIV
MÜL<— SMUL
ADD<—SADD
SUB<— SSUB

$COMPLEX(A,B)R5 5
[1] R<—MKSTR(RPtA,IP:B,T5fPEt"C0MPlf)

$

$RATI0(A,B)RJG5
[1] CK—GCD(A,B)
[2] R<—MKSTR(NUM:IDIV(A,G),DEN:IDIV(B,G),TYPE!,,RATIOn)

-57-

5SDIV(A,B)R5D5
(ILK(A)=2)X(ILK(B)=2))->7
ILK(A)=I)->5

>A[lYPE] = f,COMP")->9
'AtTYPEj^RATIO")->12

[5] R<--DIV(A,B)
[6] -13
[7] R<—RATIO (A,B)
[8] -13
[9] D<—(B[RP]xB[RP])+B[IP]xBriP]
[10] R<~COMPLEX(((X[IP]XY[IP])+X[RP]XY[RP])/D,((X[IP]XY[RP])-X[RP]XY[IP])/D)
[11] -»13
[12] R<~(A[NUM]XB[DEN])/A[DEN]XB[NUM]

$

$SMUL(A,B)R5 5
[1] ((ILK(A)=1)+ILK(A)=2)+4
[2] (A[TYPE]=nC0MPn)->8
[3] (A[TYPE 1="RATIOn)-*6
[4] R<—MUL(A,B)
[5] +9 ,
[6] R<_ (A[NÜM]xB[NUM])/A[EEN]xB[DEN]
[7] +9
[8] R<~COMPLEX((A[RP]xB[RP])-A[lP]xB[IP],(A[RP]xB[lP])+A[IP]xB[RP])

$

[1]
[2]
[3]
[4]
5

[6
[7
18]
[9"

$SADD(A,B)RjCRPR,G5
IPLUS(ILK(A)=I,ILK(A)=2)+4
(A[TYPE] =

,1
C0MP")->9

(A[TYPE] »"RATIOfl)->6
R<_ADD(A,B)
-»10
CRPR<—(A[NUM]XB[DEN])+A[DEN]XB[NUM]
R<—CRP Wk I DEN] xB [DEN]
-»10
R<—COMPIEX (A[RP]+B[RP], A[IP]+B[IP])

-58-

[1]
[2]
[3]

\i\
m
12)
121
[9]

$GCD(X,Y)RJ5
X-*3
x<~o-x
Y+5
Y<—0-Y
EQUAL (Y,1*R<~1
EQUAL(X,I*R<—1
EQUAL(X,0,R<--Y
EQUAL(Y,0,R<~X
(X-Y)->12
y<„y-X
+5
X<~X-Y

$

1
2

[5]

I!
:io.

12

$PRINT(X)jl
((ILK(X)=2)+(ILK(X)=3)hl2
TYPE(X(l))
(X[TYPE]«' RATIO")-»9
IFLJM(6,X[IP])
TYPE I r ,i+f,)

]6] TYPE(X[IP])
[7J TYPE ("I

■►13
TOPEC/")
X[DEN]
-13
X
$

-59-

A<—COMPLEX (1.0,-2.5)
.0,4.0) B<--C0MPLEX(3

PRINT(A)
1.0-2.51

PRINT(B)
3.0+4.01

PRINT (A+B)
4.0+1.51

PRINT(AXB)
1.3E1-3.5I

PRINT(A/B)
-2.8E-1-4.6E-1I

A<~4/7
B<-3/2
PRINT(A/B)

8/21

6/7

29/14

4/1

PRINT (AXB)

PRINT(A+B)

C<—24/7 %
PRINT(A+C)

-60-

[1]

_5J
[6

I]

H. Block Structure and Own Variables

The next extension we describe is not implemented in the

current version of CEL (though the additions to the current CEL that

are necessary to make it implementable are straightforward). The

base language of CEL has only two levels of block structure - vari-

ables are either global or local to a function. The following extension

would add multilevel block structure and scoping of variables (in the

ALGOL sense).

The primary data structure that we use is an environment,

defined as follows:

Env = struct (father: block, current: struct)

Block = NIL or env.

We note that the type of env[current] is not completely specified.

This is convenient in view of the way data of type env are to be con-

structed and is made possible by the absence of declarations in CEL.

We first define functions that open and close blocks and decide which

variable an identifier refers to in a particular environment.

$BEGIN(L)|I,XJ
I<—LNGTH(L)
X<—MKNST(l)
J<~ 1
(J-IM
NAME(X(J),L(J))
J<~J+1
+4
CURRENT<~MKREF(MKSTR(FA1HER:CURRENT,CURRENT:X))

$END()J5
[1] CURRENT<—VLPTR(CURRENT) [FATHER]

$

-61-

[1
2
3
4"

$SELECT(A)R*LJ
L<—-CURRENT
ELEMENT(A,VLPTR(L) [CURRENT])->7
(VLPTR(L) [FATHER]=NIL)-*6
L<~VLPTR(L) [FATHER]

[5] ">2
[6] ERROR()
[7] R<--VLPTR(L)[CURRENT*A]

The argument to begin is a row of the identifiers to be local to the

block being opened. The unimplemented (as yet) library function

MKNST creates a struct, x, whose length is the number of local iden-

tifiers. The library function NAME then attaches the names of the

elements of 1 to the components of x. Finally, the environment thus

created is made the current environment with, as father, the previous

environment. End simply transforms the current environment to the

previous one. Select, given an identifier, finds the version of it whose

scope includes the current block using the (currently unimplemented)

library function ELEMENT which determines whether a struct has

a component with a specified name. One presumes that this extension

would be used in conjunction with a syntax mapper in which <identifier>

was converted to the equivalent in the base syntax of select (<ident-

ifier>). We note that we can easily adjust this extension, by making

'current' an argument to begin, end and select, so that we can deal

with multiple parallel environments.

-62-

We can use a similar technique to obtain the effect of own

variables, i. e. , variables local to a function whose lifetime properly

contains the time during which the function is being executed. To do

this we define a data type

funcwithowns = struct(func:function, vars;struct).

Now we must define a function that is to take own variables with a

header such as "$f(x) ... " where x is a struct whose component

names are those of the formal parameters and own variables of f.

Within f, we use a mechanism like the function select (but simpler,

since environments are not nested) to get at the parameters and own

variables of f. To call f, we write "call(fprime, x , . . . ,xn)M where

the x^ are the arguments to f, fprime = struct(func:f, owns:b), and

the syntax mapper transforms "call(fprime, x,, . . . , xn)" to

f(fprime[vars]) and sets the components of fprime[vars] correspond-

ing to arguments appropriately.

-63-

SECTION VII

The Implementation of CEL

CEL is currently implemented in approximately two thousand

lines of code on a Digital Equipment Corporation PDP-10 Computer,

a one-address machine with sixteen accumulators and a sizeable in-

struction set. The implementation provides the facilities described

above via several data structures. Of particular interest are a pair

of push down stacks which are used to drive program execution and a

large data area which contains all linked structures used - including

all program variables as well as program text. This space is garbage

collected by means of a modification of the algorithm described by

Schorr and Waite in [25] (see also [17], p. 417).

We hope, as noted previously, to make several eventual

improvements in this implementation. In particular, we plan to include

a Brooker and Morris-like syntax definition mechanism and text editing

and debugging facilities like those of APL. Some less important changes

are also intended, including the addition of a number of new library

functions and the improvement of the storage management algorithms

currently in use.

-64-

SECTION VIII

Conclusions

We hope that it is clear from the examples given above

that extensible languages in general, and CEL in particular, provide

mechanisms that make it possible to deal conveniently with many diverse

problem areas. We note that each of the examples of Section VI was

coded and debugged in less than a day's time (often a good deal less).

By contrast, the implementers of FORMULA ALGOL required eight

man years to produce a system containing these facilities [32], We

do not have enough experience with programming in extensible languages

to provide a basis for comparing their practical utility with that of

the shell and special purpose languages, particularly in large appli-

cations. But we can point to the relative ease of implementing exten-

sible languages and programming in them (especially when conver-

sational features are included) as very significant advantages of ex-

tensible languages. Even where object program efficiency is an important

consideration, it may often turn out that a compilation facility (together

with optional declarations in a typeless language) will make object

program efficiency quite adequate.

-65-

Appendix A

Library Functions of CEL

The following library functions are included in CEL's cur-

rent implementation:

1. ASGNC (respectively ASIGN) takes two arguments and sets the

value of the first as the second (respectively a copy of the second).

ASIGN is invoked by the infix operator <--.

2. BRNCH, if called with two arguments x and y is equivalent to

IFGJM(y,x); if called with one argument x it is equivalent to GOTO.

It is invoked by the infix operator-->.

3. EQUAL(x,y) = if x is the same as y in value and type then 1 and

otherwise 0. It is invoked by the infix operator =

4. GOTO takes a single integer argument and sets the program counter

to the value of this argument,

5. IDIV (respectively IMULT, IPLUS, ISUB) takes two integer argu-

ments x and y and returns [x*-y] (respectively the product, sum,

difference of x and y).

6. IFGJM (respectively IFLJM, IFZJM) takes two integer arguments

and sets the value of the program counter as the first if the second

is positive (respectively negative, zero).

7. IL/K(x) returns an integer code for the type of x as follows:

NIL 0

real 1

integer 2

literal 3

struct 4

ref 5

-66-

row 6

oref 7

identifier 8

delimiter 9

code string pair 10

defined function 11

library function 12

packed identifiers 13

statement 14

locked function 15

single row or struct argument a

length.

9. MKNRW(n), n a positive integer, returns a row x of length n sat-

isfying (Vl<i<n) (x(i) = NIL)

10. MKREF(x) returns a pointer to x.

11. MKROW takes an arbitrary positive number of arguments and re-

turns a row (whose length is the number of arguments) of copies

of their values.

12. MKSTR takes a set of arguments {Li^vi}i=i» ^O , and returns a

struct x of length n whose i component is named Li and has as

value a copy of V^.

13. NOTEQ(x, y) = if x is the same as y in value and type then 0 and
otherwise 1. It is invoked by the infix operator ^ . .

14. RDIV (respectively RMULT, RPLUS, RSUB) takes two real argu-

ments and returns their quotient (respectively product, sum, differ-

ence).

15. SDIV (respectively SMUL, SPLUS, SSUB) takes two real or integer

arguments, converts the second to the type of the first and invokes

IDIV or RDIV (respectively IMUL or RMUL, IPLUS or RPLUS,

ISUB or SSUB) as appropriate to do the calculation. It is invoked

-67-

by the infix binary operator / (respectively *, +, -).

16. TYPE takes a single argument and outputs it to the user's

teletype if it is real, integer or literal.

17. VLPTR(x) returns, for x a ref, the datum at which x points.

-68-

A ppendix B

F and G Functions and Precedence Matrix

for a Front End Syntax of CEL

G: S ::=E | I:E

E ::=T a E | a E | T

T ::=I| C | (S) | T() | T(S,...,S) | T[l;...;l]

g 1 3 3 1 3 3 3 1 3 3

f • a () » [] > C I

2 : < < > < > < <

2 a < < > < > < <

1 (< < = < = < <

4) > > > > >

3 • =

3 [=

4] > > > > >

1 » < < = < < !

4 C > > > > >

4 I B > > > 3 > = >

-69-

REFER ENCES

1. Berry, Paul, APL/360 Primer, International Business

Machines Corporation, (1969).

2. Bobrow, Daniel G. (ed.), Symbol Manipulation Languages

and Techniques, North Holland Publishing Company,

Amsterdam, (1968).

3. Brooker, R.A., Morris, D. , "A General Translator Pro-

gram for Phrase Structure Languages, " Journal

of the ACM , vol. 9, no. 1,'Jan. 1962), p. Iff.

4. Cheatham, T. E. Jr., "The Introduction of Definitional

Facilities into Higher Level Languages," Proc.

AFIPSFJCC, vol. 29, Nov. 1966).

5. , Lectures and Notes for Applied Math-

ematics 223, Harvard University, (Spring 1969).

6. , et_al., "On the Basis for ELF An Ex-

tensible Language Facility," Proc. AFIPS FJCC,

vol. 33, Part II, (Dec. 1968).

7. , The Theory and Construction of Com -

pilers, Second Edition, Computer Associates (1967

and Subsequent Revisions).

8. Christensen, Carlos, et_al. , (ed.), SIGPLAN Notices:

Proceedings of the Extensible Languages Sympos-

ium, vol. 4, (Aug. 1969).

9. Conway, M. E. , "Design of a Separable Transition Diagram

Compiler," Communications of the ACM, vol. 6,

no. 4, (July 1963), p. 396 ff.

10. Feldman, J. A. and Gries, D. , "Translator Writing Systems, "

Communications of the ACM , vol. 11, no. 2, (Feb. 1968).

11. Floyd, Robert W. , "Syntactic Analysis and Operator Preced-

-70-

ence, " Journal of the ACM, vol. 10, no. 3, (1966),

pp. 316-333.

12. Galler, B. A. and Perlis, A. J. , "A Proposal for Definitions

in ALGOL,, " Communications of the ACM, vol. 10,

no. 4, (April 1967).

13. Garwick, Jan V. , "GPL: A Truly General Purpose Lan-

guage, " C£mmujii£ation£ of_the ACM, vol. 11, no. 9,

(Sept. 1968).

14. Gold, Michael M. , "Time Sharing and Batch - An Experi-

mental Comparison of Their Values in a Problem-

solving Situation, " Communications of the ACM,

vol. 12, no. 5, (May 1969).

15. Iverson, Kenneth E. , A Programming Language, John Wiley

and Sons, Inc. , New York, (1962).

16. Jorrand, Phillipe, "BASEL, the Base Language for an Exten-

sible Language Facility, " SIGPLAN Extensible Lan-

guages Symposium, War Memorial Auditorium, Boston,

(May 13, 1969).

17. Knuth, Donald E. , The Art of Computer Programming, Vol. 1:

Fundamental Algorithms, Addison-Wesley, (1968).

18. , The Art of Computer Programming , Vol.2:

Seminumerical Algorithms, Addison-Wesley, (1969).

19. Leavenworth, B. M. , "Syntax Macros and Extended Trans-

lation, " C^mmu^ii£a^ion£ o£.tll£_A£^L' vo^ 9» no. 11,

(Nov. 1966).

20. Landin, P. J. , "The Mechanical Evaluation of Expressions, "

Computer Journal, vol. 6, no. 4, (Jan. 1964), p. 308 ff.

21. McCarthy, John, "Recursive Functions of Symbolic Expressions

and their Computation by Machine, Part I, "

-71-

Communications of the ACM, vol. 3, no. 3, (March

I960), p. 184 ff.

22. Mealy, George H. , Personal Communication, (March 1970).

23. Reynolds, Jon C. , "Gedanken - A Simple Typeless Language

Which Permits Functional Data and Co-routines,"

Argonne National Laboratories, Argonne, Illinois,

(May 1969).

24. Sackman, H. , Erikson, W. J. and Grant, E. E. , "Explor-

atory Experimental Studies Comparing On Line and

Off Line Programming Performance, " Communi-

cations of the ACM, vol. 12, no. 1, (Jan. 1968).

25. Schorr, H. and Waite, W. M. , "An Efficient Machine-Inde-

pendent Procedure for Garbage Collection in Various

List Structures, " Communications of the ACM, vol. 10,

no. 8, (Aug. 1967).

26. Standish, Thomas A. , "A Data Definition Facility for Pro-

gramming Languages," Carnegie Institute of Tech-

nology, Pittsburgh, (May 1967), (Doctoral Dissertation).

27. , "An Essay on APL, " Carnegie Insti-

tute of Technology, (March 1969).

28. , Lectures and Notes for Applied Mathe-

matics 260-261, Harvard University, (Fall-Spring,

1969-70).

29. , "A Preliminary Sketch of a Polymor-

phic Programming Language, " Centro De Calculo

Electronico, Universidad Nacional Autonoma De

Mexico, Mexico City, (July 1968).

30. , "Some Compiler-Compiler Techniques

for Use in Extensible Languages, " SIGPLAN Exten-

sible Languages Symposium, War Memorial Auditor-

-72-

ium, Boston, (May 13, 1969).

31. , "Some Features of PPL - A Poly-

morphic Programming Language, " SIGPLAN Ex-

tensible Languages Symposium, War Memorial Aud-

itorium, Boston, (May 13, 1969).

32. , Personal Communication, (April 22,

1970).

33. Thompson, F. B. , "R.EL: A Rapidly Extensible Language, "

California Institute of Technology, Pasadena, Califor-

nia, (Feb. 1969).

-73-

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified L-

I. ORIGINATING A CTI VI TV (Corpora te author)

Harvard University
Cambridge, Massachusetts

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

N/A
3. REPORT TITLE

THE DESIGN AND IMPLEMENTATION OF A CONVERSATIONAL EXTENSIBLE LANGUAGE

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

None
5- AUTHOR(S) (Fitat name, middle initial, last name)

Jay M. Spitzen

6. REPORT DATE

May 1970

7a. TOTAL NO. OF PAGES

77
7b. NO. OF REFS

70
8a. CONTRACT OR GRANT NO.

FI9628-68-C-0K)f
b. PROJECT NO.

9a. ORIGINATOR'S REPORT NUM8ER(S)

ESD-TR-70-I4I

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sales; its distribution is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILI TARY ACTIVITY

Directorate of Systems Design and Development,
Hq Electronic Systems Division (AFSC),
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

This report describes CEL, a conversational extensible
language. Its syntax, data, control structures and conversational
features are presented and compared to those of other languages.
Its use is illustrated by means of several examples in the areas of
list processing, polynomial arithmetic, formula manipulation,
vector arithmetic, trees and syntax analysis, complex and
rational arithmetic and block structure and own variables.

DD /r.,1473 Unclassified
Security Classification

Unclassified
Security Classification

K EY WORDS
ROLE WT

Extensible Language
Conversational Language
Data Definition Facility

I

Unclassified
Security Classification

